Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 3(3): fcab170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34396117

RESUMO

We reported recently that the elevated plus maze is a good tool for evaluating cognitive and motor functional changes in gamma-irradiated rats as a model for new drug evaluation and monitoring. The capacity of Garcinia kola to mitigate radiation-induced brain injury is currently unknown. We therefore assessed the effects of the neuroprotective medicinal plant Garcinia kola, on the cognitive and motor changes in this murine model of acute radiation syndrome. Wistar rats exposed once to an ionizing dose of Tc99m-generated Gamma radiation were treated with an ethyl acetate fraction of methanolic extract of Garcinia kola seeds (content of 100 mg/kg of extract) for 9 weeks. Cognitive and motor function indicators were assessed in the elevated plus maze in these animals and compared with irradiated control groups (vitamin C- and vehicle-treated groups) and the non-irradiated control rats. The irradiated control group displayed cachexia, shaggy and dirty fur, porphyrin deposits around eyes, decreased exploratory activity, reduced social interactions and a loss of thigmotaxis revealed by a marked decrease in rearing episodes and stretch attend posture episodes close to the walls of elevated plus maze closed arm, an increased central platform time, and decreases in open arm time and entries. This group further displayed a decrease in head dips and grooming episodes. Treatment with Garcinia kola, and in a lesser extent vitamin C, significantly prevented the body weight loss (P < 0.001) and mitigated the development of elevated plus maze signs of cognitive and motor affections observed in the irradiated control group (P < 0.05). Altogether, our data suggest for the first time that Garcinia kola seeds have protective properties against the development of cognitive and motor decline in the acute radiation syndrome-like context. Future studies are warranted to characterize the molecular mechanisms and neuronal networks of this action.

2.
Adv Biomed Res ; 9: 72, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33816391

RESUMO

BACKGROUND: Experimental models are needed to better understand the pathophysiology of neurodegenerative diseases to develop novel therapeutics. The neuropathology and clinical signs of acute radiation syndrome resemble those of neurodegenerative conditions. We characterized elevated plus maze (EPM) indicators of cognitive and motor impairment in rats exposed to brain-damaging doses of gamma radiation to develop a model for neurological component of the acute radiation syndrome. MATERIALS AND METHODS: Technetium 99 m was administered once through tail vein to male Wistar rats to reach an absorbed dose of Gamma radiation of 667 mGy (66.7Rad). Animal performance in the EPM was assessed every 14 days. Rats were observed for 9 weeks for the occurrence of systemic and neurological signs. Comparisons were done between irradiated and nonirradiated rats, and in each group with baseline performance. RESULTS: EPM indicators of cognitive and motor impairment, anxiety, and depression were observed concomitantly and increased with the severity of acute radiation syndrome-like systemic and neurological signs. Alterations in EPM indicators appeared 3 weeks postirradiation and their severity increased with time. Notably, arm transitions and the distance covered in the maze were decreased (-56.71% and -73.62%, P < 0.001), as well as open arm entries and time spent in open arms (-77.78% and -76.19%, P < 0.05) and the indicator of thigmotaxis rearing (-92.45, P < 0.001). CONCLUSIONS: Our results suggest that irradiated rat performance in the EPM paradigm reflects disease severity and could be used to perform both acute and subchronic pharmacological studies in acute radiation syndrome-like diseases in rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...